2017년 3월 14일 화요일

차세대 로봇 시장의 동향

인공지능 기술과 산업이 발전하면서 산업에 필요한 로봇 산업도 함께 성장하게 되었다. 자동화를 위한 과거의 로봇 산업은 현재 지능을 갖춘 지능형 로봇으로 발전하고 있는데 머신 러닝을 통한 인공지능의 발전이 로봇 산업의 발전을 이끌고 있는 추세다. 이번 회에서는 로봇 산업의 전반적인 동향에 대해 살펴보고자 한다.
로봇의 개요
로봇은 인간을 모방하여 외부 환경을 인식(Sense)하고 상황을 판단(Think)한 후 자욜적으로 동작(Act)하는 기계를 말하는데 인간의 오감과 두뇌, 손과 팔, 표현 등을 기계가 하게 된다. 로봇은 인간을 대신해 단순 반복되는 작업을 담당하는 것으로 시작되었고 제조업에서 많이 사용되다가 최근에는 서비스용으로 많이 활용되고 있다(그림1).

<그림1> 로봇의 종류


출처: T-Robot

로봇을 최초로 적용한 곳은 산업용이었다. 단순 반복 작업을 자동화한 경우가 대부분이었기 때문에 현재의 로봇 형태보다는 공장의 기계에 가까웠지만 자율적인 다양한 작업을 처리하는 로봇이 나타나고 있고 곧 지능을 가지고 응용 작업을 할 수 있는 로봇이 나타날 것으로 기대되고 있다. 이러한 변화는 인간의 노동을 단순 대체하는 것에서 노동을 보완하고 향후에는 인간의 삶을 개선하는 효과를 가져올 것이다.
로봇 기술의 발달은 산업 측면에서 로봇을 활용하면서 인간이 회피하는 작업을 대체하고 노동 대체 효과로 인해 산업 경쟁력이 강화되며 생산성 향상과 규모가 증가함으로써 연관된 산업의 동반 성장 효과를 가져올 것으로 보인다. 이러한 성장은 새로운 고용 창출로 이어지며 산업 전반에 긍정적 효과를 보이게 된다(그림2).

<그림2> 로봇 산업의 효과

해외 로봇 산업 동향
보스턴 컨설팅 그룹에 따르면 전세계 제조업 분야에서 로봇의 활용도는 현재 10% 정도이지만 2025년에는 25%로 증가할 것으로 예상하고 있다. 첨단 기술의 발전으로 로봇의 가격이 인하되고 기능이 비약적으로 향상될 것으로 보이기 때문이다. 표1은 2015년에 발표된 로봇 시장 규모를 나타내고 있다.

미래기술이 현실화된 기술

미래 기술에 대한 예측 보고서가 매년 셀 수 없을 만큼 나온다. 산업 전반에 걸친 예측 보고서의 주체는 정책 기관이나 연구 기관이 될 수도 있지만 단위 기업에서도 자신들이 준비하고 있는 미래 기술들을 발표하는 경우도 있다. 이처럼 수많은 미래 기술이 예측되고 있지만 당장 실현되는 경우도 있지만 수십년이 지나도 실현되지 않는 기술도 있다. 이번 회에서는 프리랜서 고동욱 프로, 고려대학교 이영환 박사와 단국대학교 김규억 박사를 만나 미래 기술이 성공한 요인에 대해 살펴보기로 한다.

Q: 안녕하세요. 이번 주제는 매우 주관적인 견해가 강할 것도 같고, 어디서부터 이야기를 나눠야 할지도 걱정이네요. 어느 시점에서 생각하는 미래 기술일지 정하는 것이 좋을 것 같습니다.

IT 기술이 본격화된지는 오래 되었지만 일반 사람들이 직접 경험하면서 느낀 때는 2000년 전후이지 않을까 싶습니다. 더구나 2000년은 20세기에서 21세기로 바뀌면서 Y2K 이슈나 기술의 패러다임이 바뀔 것이라는 기대가 많았던 때이기도 합니다. 대략 20년 정도 전이니 인터넷이 일반 사람들에게 어느정도 활성화되기 시작한 때로 봐야 할 것 같습니다(그림1).

<그림1> Y2K 관련 내용들

출처: 인터넷

지금이라면 IT를 잘 모르는 사람들도 과도한 걱정이었다는 것을 알았을 겁니다. 그만큼 정보가 부족했던 것도 사실이었지만 중요한 사실은 당시에 사람들이 매우 놀랄 정도의 기술들이 많이 선보였기 때문에 IT 기술에 대한 경이감 같은 것도 있었을 때입니다.

Q: 정확하게 그 시점을 지정하시는 것을 보면 무언가 이유가 있을 것 같습니다.

네. 잘 보셨습니다. 2000년이 오기 몇 년 전부터는 2000년을 기점으로 많은 미래 기술이 나타날 것이라는 발표가 많았습니다. 제가 가장 기억이 또렷한 것은 타임즈에서 정한 지금처럼 “미래의 10대 기술”처럼 명확하게는 아니었지만 “최첨단 기술 10가지” 정도로 기억합니다. 당시는 인터넷이 발달하지는 않아서 잡지 형태로 읽었습니다. 이번 이야기에서 보려고 찾아보았는데 없더군요. 아쉬웠습니다.
당시에 기억나는 기술이 몇가지 있는데 먼저 3D 프린터입니다. 당시에는 3D 스캐너도 소개되었는데 가격은 비싸도 조만간 싸게 나올 것이라고 해서 기대가 많았습니다. 품질은 지금과 거의 유사할 정도로 정밀도가 높았던 것으로 기억합니다. 그리고 가정의 중앙 관리식 기기입니다. 집에 있는 전자 제품들을 하나의 기기에 연결해서 제어할 수 있도록 하는 기기였습니다. 불이나 TV도 키고 컴퓨터도 연결해서 인터넷을 할 수 있고 다양한 가정의 정보를 한 곳에서 관리하는 것이지요. 딥 러닝의 전신인 뉴럴 네트워크도 그 때 실현 가능성이 점쳐지기도 했습니다. 문자인식이나 음성인식 등은 실제 적용도 했던 시기였습니다(그림2).

<그림2> 2000년 전에 정립된 기술의 예

출처: 인터넷

Q: 말씀하시는 기술들이 지금 주목받는 기술들로 보이는데 20년 전에 이미 나온 기술이란 건가요?

네, 그렇습니다. 흥미로운 사실이죠. 당시에 소니는 중앙 관리식 기기를 실제로 만들고자 했습니다. 네트워크 선을 연결해서 모든 정보를 주고받고 제어할 수 있도록 말이지요. 정확한 사실이 아닐 수도 있지만 이 것이 플레이스테이션2라고 알려져 있었습니다. 이후에 나온 Xbox도 비슷한 역할을 수행하고자 시도를 했던 적도 있습니다. 물론 정확하게 그 기능을 위해서 만들어진 것은 아니지만요.


4차 산업혁명과 플랫폼

4차 산업혁명을 소프트웨어 관점에서 살펴보고 있다. 4차 산업혁명은 산업 관점과 그에 맞는 비즈니스 관점, 정책 관점 등 다양한 관점으로 해석될 수 있다. 심지어는 4차 산업혁명이 올바르게 적용하기 위해 인사조직 관점으로도 해석되기도 한다. 여기에 4차 산업혁명은 IT 기술이 접목된 개념이기 때문에 소프트웨어 관점으로 바라볼 필요가 있다. 이번 회는 두번째 시간으로 4차 산업혁명과 플랫폼에 대해 살펴본다.
4차 산업혁명의 특징
Wikipedia에 의하면 4차 산업혁명을 구성하는 핵심 요소는 어디에서나 연결이 가능하여 원하는 정보를 어디에서든 찾을 수 있는 초연결성과 다른 능력과 연결하여 나타나는 인간의 능력을 뛰어넘는 행동과 판단을 할 수 있는 초지능성으로 나타나있다. 초연결성과 초지능성을 합쳐 기술로 만들어지면 여러 개의 정보가 모여 예측 가능한 새로운 나타나고, 이를 통해 각 산업의 생산성을 높일 수 있는 혁신이 일어날 수 있는 것이다. 정리하면 4차 산업혁명의 특징은 초연결성, 초지능성, 예측 가능성이고, 사람과 사물, 사물과 사물이 네트워크로 연결(초연결성)되어 방대한 데이터를 분석하여 일정한 패턴을 파악(초지능성)하고 분석 결과를 토대로 인간의 행동을 예측(예측 가능성)한다고 볼 수 있다. 2016 다보스 포럼에서는 “모든 것이 IT기술 발전에 의해 연결되고 기업의 경계들도 무너지는 것을 4차 산업혁명이라고 볼 수 있다”라고 하였다(그림1).

<그림1> 4차 산업혁명으로의 변화
출처: ZDNET Korea

4차 산업혁명 시대에는 IT 기술을 기반으로 고도화된 자동화 단계인 3차 산업혁명을 기반으로 IT 융합 기술을 통해 산업 내 또는 산업 간의 경계가 없어질 것으로 보이기 때문에 각 산업에서는 생산성을 높이고자 IT 기술을 앞다투어 받아들이고 있는 것이다. 전통적인 제조업체 GE가 2020년까지 소프트웨어 기업이 될 것이다라고 선언한 것이 이러한 이유 때문이다.
4차 산업혁명에서 필요한 요소
4차 산업혁명의 특징인 초연결성, 초지능성, 그리고 예측 가능성을 위해서는 인공지능이 빠질 수 없는 IT 기술 요소이다. 이전에는 각 산업 전문가가 자신만의 노하우로 데이터를 수집하고 판단하여 산업의 발전을 이끌었다. 하지만 전문가의 노하우 외적인 요소가 첨가되면 판단의 오차는 매우 크게 나타날 수 있다. 인공지능은 이러한 한계를 극복할 수 있도록 방대한 양의 데이터와 전문가도 판단하기 힘든 비정형 데이터까지 수집하고 분석할 수 있다. 초지능적인 분석을 할 수 있고 분석 데이터를 바탕으로 가능성을 예측할 수 있는 것이다.
이때 초연결성을 위해 IT 기술을 하나 더 포함시키기도 하는데 바로 IoT다. 사람과 사물, 사물과 사물을 연결하여 실시간으로 모든 데이터를 수집해야 하기 때문에 IoT(사물인터넷)의 적용은 필수적이라 할 수 있다. 좁게는 사람과 사물, 넓게는 산업과 산업 간의 융합을 통한 4차 산업혁명이 IoT와 인공지능으로 가능하다고 해석할 수 있다. 물론 이 외에도 다른 요소가 가미될 수 있겠지만 소프트웨어 관점에서는 이 두 기술이 필수 요소라 할 수 있다. 전세계 모든 사물이 인터넷을 통해 연결되고 여기서 모인 빅데이터를 분석하여 판단하는 인공지능이 있다면 가장 이상적인 4차 산업혁명의 인프라가 구축되었다고 볼 수 있다.
2016년 다보스 포럼의 주요 안건은 4차 산업혁명과 글로벌 문제의 해결이었다. 4차 산업혁명을 통해 글로벌 경제 간 경계를 허물고 산업 전반에서 성장 동력을 찾자는 것이었다. 이러한 안건을 해결하기 위해서 4차 산업혁명을 기반으로 글로벌 경계를 허물고 공조하여 글로벌 성장 동력을 찾는 것으로 대안이 모아졌다(그림2).

<그림2> 2016년 다보스 포럼의 주요 안건

출처: 현대경제연구원, 한국인사이트연구소
4차 산업혁명을 위한 플랫폼 구성
4차 산업혁명에서 가장 필요한 요소는 인공지능일 것이다. 그런데 인공지능이 제 역할을 하기 위해서는 많은 입력 데이터가 필요하고 이러한 빅데이터 수집을 위해서는 IoT가 반드시 필요할 수 밖에 없다.