인공지능에 대한 관심은 이전에도 있었지만 최근처럼 뜨거운 열풍을 일으킨 것은 역시 알파고(AlphaGo)다. 알파고는 우리나라 이세돌 9단과 바둑 대결을 한 구글 딥마인드(DeepMind)에서 개발된 인공지능이다. 대결 전에는 이세돌 9단의 우세를 점치는 전문가들이 많았지만 실제 경기에서는 알파고의 승리로 끝났다. 그렇다면, 어떻게 컴퓨터가 사람처럼 바둑을 두는 것인지 자연스러운 의문을 가지게 된다. 이번 회에서는 알파고가 바둑을 두는 알고리즘에 대해 단국대학교 소프트웨어공학연구센터의 김규억 박사를 만나 자세한 사항을 들어본다.
Q: 본격적인 이야기 전에 머신러닝에 대해 설명을 부탁 드립니다.
머신러닝(Machine Learning)은 컴퓨터에 답이 정해진 샘플 데이터를 넣으면서 반복적으로 학습을 시킨 후, 새로운 문제가 나타나면 스스로 답을 찾을 수 있도록 하는 것입니다. 말 그대로 컴퓨터한테 공부를 가르쳐서 지식을 얻게 하는 것이지요. 학습 자료를 계속 입력하고, 거기서 일정한 패턴을 찾아낸 후 문제가 입력되면 정답을 제시할 수 있는 모델이 만들어집니다(그림1).
<그림1> 머신러닝의 학습을 통한 예측 모델 생성
이렇게 만들어진 모델로 새로운 문제가 제시되면 정답을 찾아낼 수 있는 것이죠. 사람이 수학 문제를 많이 풀면, 비슷한 유형의 문제가 나오면 풀 수 있는 것처럼 컴퓨터도 학습을 하면 별다른 로직 없이 정답을 알려주는 것입니다.
댓글 없음 :
댓글 쓰기